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Abstract. We introduce a class of quantum heat engines which consists of two-energy-eigenstate systems,
the simplest of quantum mechanical systems, undergoing quantum adiabatic processes and energy ex-
changes with heat baths, respectively, at different stages of a cycle. Armed with this class of heat engines
and some interpretation of heat transferred and work performed at the quantum level, we are able to
clarify some important aspects of the second law of thermodynamics. In particular, it is not sufficient to
have the heat source hotter than the sink, but there must be a minimum temperature difference between
the hotter source and the cooler sink before any work can be extracted through the engines. The size
of this minimum temperature difference is dictated by that of the energy gaps of the quantum engines
involved. Our new quantum heat engines also offer a practical way, as an alternative to Szilard’s engine, to
physically realise Maxwell’s daemon. Inspired and motivated by the Rabi oscillations, we further introduce
some modifications to the quantum heat engines with single-mode cavities in order to, while respecting the
second law, extract more work from the heat baths than is otherwise possible in thermal equilibria. Some
of the results above are also generalisable to quantum heat engines of an infinite number of energy levels
including 1-D simple harmonic oscillators and 1-D infinite square wells, or even special cases of continuous
spectra.

PACS. 05.90.+m Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems
– 05.70.-a Thermodynamics

1 Introduction

The second law has started out as a “no-go” statement
against a certain class of perpetual machines but is now a
pillar of modern physics, supported by experimental evi-
dence without exception so far. While the first law of ther-
modynamics is a statement of quantity about energy con-
servation, the second law is a statement of quality about
what kinds of energy transformations are and are not al-
lowed. There are several classical statements of the second
law [1,2]:

• Kelvin-Planck: No process is possible whose sole re-
sult is the absorption of heat from a reservoir and the
conversion of this heat into work;

• Clausius: No process is possible whose sole result is
the transfer of heat from a cooler to a hotter body;

• Entropy Maximum Postulate: The entropy of a
closed system never decreases in any process.

The first two statements above can be shown to be equiv-
alent by the introduction of intermediate heat engines.
And the last postulate requires the introduction of entropy
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which is a function of extensive parameters of a compos-
ite system, defined for all equilibrium states and having
certain properties.

Entropy of a composite system in a macro-state can
be linked, in statistical physics, to the statistics of the
many micro-states that correspond to the same macro-
state. In order to satisfy the statistical nature of entropy
and to derive the principle of increasing entropy, several
fundamental assumptions are required [3]:
• the composite system has a large number of compo-

nents (atoms, molecules, etc.);
• these components can be divided into a small num-

ber of classes of indistinguishable components (in fact,
were every molecule of a gas assumed to be different
from each other then statistical physics would become
fairly simple but useless as it would not be able to
account for the non-decreasing flow of entropy);

• Boltzmann’s fundamental hypothesis [4]: all micro-
states are equally probable. This is termed as el-
ementary disorder by Planck and has been gener-
alised to the quantum domain as the hypotheses of
equal a priori probabilities and random a priori phases
for the quantum states of a system [5]. All of these
can be subsumed by the (somewhat stronger) ergodic
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hypothesis [4] which postulates that the dynamical
time average is equal to the ensemble average (of ap-
propriate ensembles), except for a number of excep-
tional initial conditions of relatively vanishing impor-
tance.

No matter how reasonable the last assumption may be,
it should be pointed out that those hypotheses are not a
part of but are extra to the first principles of quantum
mechanics.

The second law was indeed the motivation and the
philosophical reason for Max Planck to introduce the con-
cept of energy quanta in his solution for the puzzle of
black-body radiation [3]. His line of reasoning can be
rephrased as follows: the second law is about irreversibility
in nature; irreversibility does nothing but defines a pref-
erence of the more probable over the less probable; and
the probability assignment for physical states (in order to
have the more and the less probables) requires those states
to belong to a distinguishable variety of possibilities. This
led Planck to the conclusion that the atomic hypothesis
must be necessary. And the rest was history; the concept
of quanta was then born as the states of discrete homoge-
neous elements. In that context, the study of heat engines
in the quantum domain in relation to the second law is a
contribution to a completion of the circle that was started
at the beginning of the last century.

Present technology now allows for the probing and/or
realisation of quantum mechanical systems of mesoscopic
and even macroscopic sizes (like those of superconduc-
tors, Bose-Einstein condensates, etc.) which can also be
restricted to a relatively small number of energy states. It
is thus important to study these quantum systems directly
in relation to the second law. Our study, started with [6]
and further expanded in this paper, is part of a growing
body of investigations into quantum heat engines [7–16].
Explicitly, the only principles we will need are those of the
Schrödinger equation, the Born probability interpretation
of the wavefunctions and the von Neumann measurement
postulate [17]. In particular, we will not exclude, but will
make full use of, any exceptional initial conditions, as long
as they are realisable physically. However, without a bet-
ter understanding of the emergence of classicality from
quantum mechanics, we will have to assume the thermal
equilibrium Gibbs distributions for the heat baths that are
coupled to the quantum systems. This assumption is re-
lated to the fundamental assumptions mentioned above
and is extra to those of quantum mechanics. Even though
we do not impose this extra assumption on the quantum
mechanical systems, the steady-state distributions for the
systems will eventually reach the Gibbs distributions in
time because of the coupling with the heat baths, see equa-
tion (14) below.

In order to introduce a class of heat engines operating
entirely in the framework of quantum mechanics, we will
need a quantum interpretation of the transfer of heat and
performance of work in the next section. This interpreta-
tion is also necessary for a review of the second law and
for a possible realisation, as an alternative to Szilard’s en-
gine, of Maxwell’s daemon in Sections 3 and 4. The quan-

tum heat engines are then considered next both in ther-
mal equilibrium and also in thermal non-steady states, in
Sections 5 and 6. We find from these quantum considera-
tions that even though the second law is not violated in a
broad sense, it needs some refinements and clarifications.
We also demonstrate that more work can be extracted by
the engines in non-steady states than otherwise is possible
in thermal equilibrium, Section 7. Section 8 provides an
explicit numerical illustration of such capability. We then
discuss Maxwell’s daemon further in Section 9 as the rea-
son behind any violation of the second law were we ever
able to control the quantum phases of the heat baths.
Sections 10 and 11 contain some generalised results for
quantum heat engines with simple harmonic oscillators
and infinite square wells, respectively, all in one dimen-
sion. These results are indeed universal for certain class of
quantum systems having continuous spectra. Finally, we
end the paper with some concluding remarks in the final
Section 12.

2 Quantum identifications of heat exchanged
and work performed

The expectation value of the measured energy of a quan-
tum system with discrete energy levels is

U = 〈E 〉 =
∑

i

piEi, (1)

in which Ei are the energy levels and pi are the corre-
sponding occupation probabilities. Infinitesimally,

dU =
∑

i

{Ei dpi + pi dEi}, (2)

from which we make the following identifications for in-
finitesimal heat transferred d̄Q and work done d̄W

d̄Q :=
∑

i

Ei dpi, d̄W :=
∑

i

pi dEi. (3)

Mathematically speaking, these are not total differentials
but are path dependent. These expressions interpret heat
transferred to or from a quantum system as the change in
the occupation probabilities but not in the change of the
energy eigenvalues themselves; and work done on or by a
quantum system as a redistribution of the energy eigenval-
ues but not of the occupation probabilities of each energy
level. Together with these identifications, equation (2) can
be seen as just an expression of the first law of thermody-
namics, dU = d̄Q+ d̄W .

The above link between the infinitesimal heat trans-
ferred to the infinitesimal change of occupation probabili-
ties is in accord with, or at least is not in contradiction to,
the thermodynamic link between heat and entropy, d̄Q =
T dS, in combination with the statistical physical link be-
tween entropy and probabilities, S = −k∑

i pi ln pi. On
the other hand, expression (3) linking work performed to
the change in energy levels agrees with the fact that work
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done on or by a system can only be performed through a
change in the generalised coordinates of the system, which
in turn gives rise to a change in the distribution of the en-
ergy levels [18].

Starting, on the other hand, with the general expres-
sion for the energy average in terms of the density operator
ρ(t) and the time-dependent Hamiltonian H(t),

U(t) = tr [ρ(t)H(t)] ,

and its temporal derivative

∂tU(t) = tr [∂tρ(t)H(t)] + tr [ρ(t)∂tH(t)] ,

we can otherwise identify the first term on the rhs as the
rate of heat transferred, and the second the rate of work
performed. This identification reduces to that in (3) above
if we assume that, as is the case considered in this pa-
per, when dealing with thermodynamical work, a concept
which involves some energy coupling with a classical en-
vironment, the density operator becomes diagonal in the
energy basis. This is the usual assumption of standard
Quantum Mechanics for the emergence of classicality via
measurement and/or decoherence.

3 A class of quantum heat engines

The quantum heat engines considered herein are just two-
energy-level quantum systems, the simplest of quantum
mechanical systems, operated in a cyclic fashion described
below. (They are the quantum analogue of the classical
Otto engines and are readily extendable to systems of
many discrete energy levels.) They could perhaps be re-
alised with coherent macroscopic quantum systems like,
for instance, a Bose-Einstein condensate confined to the
bottom two energy levels of a trapping potential. The ex-
act cyclicity will be enforced to ensure that upon complet-
ing each cycle all the output products of the engines are
clearly displayed without any hidden effect.

A cycle of the quantum heat engine consists of four
stages:

• Stage 1: the system has some probability to be in the
lower state prior to some kind of contact (whose na-
ture will be discussed later on) with a heat bath at
temperature T1. After some time interval, there is a
probability that the system receives some energy from
the heat bath to jump up an energy gap of ∆1 to be
in the upper state. According to the interpretation of
the last section, only heat is transferred in this stage
to yield a change in the occupation probabilities, and
no work done as there is no change in the values of the
energy levels. This stage is depicted on the left hand
side of Figure 1.

• Stage 2: the system is then isolated from the heat bath
and undergoes a quantum adiabatic expansion, whose
net result is to reduce the energy gap from ∆1 to a
smaller value ∆2. In this stage, provided the expan-
sion rate is sufficiently slow according to the quantum
adiabatic theorem [19], the occupation probabilities for

Fig. 1. On the left hand side, a two-state quantum system in
the lower state comes into contact with a heat bath at temper-
ature T1 for some time until it absorbs an amount of energy
∆1 to jump into the upper state. Next in the passage to the
right hand side, the system undergoes a quantum adiabatic
process, remaining in the upper state, and performs work on
the relaxing potential wall. On the right hand side, the system
comes into contact with another heat bath at temperature T2

for some time until it releases an amount of energy ∆2 to jump
back to the lower state. In the final passage to the left hand side
to complete a cycle of the heat engine, the system undergoes
another quantum adiabatic process in which it remains in the
lower state and work is done on the system by the compressing
potential wall.

the two states remain unchanged. The system may per-
form an amount of work. This is depicted as the upper
branch of Figure 1 running from left to right. Note that
there is no change in probability so there is no heat
transferred; that is, the amount of work performed by
the system is maximal as all available energy is con-
verted to work (see [20], for example, for a general
proof and some further discussion). We also mention
here that a quantum adiabatic process implies a ther-
modynamical adiabatic process, but not the other way
around in general1.

• Stage 3: the system is next brought into some kind of
contact with another heat bath at temperature T2 for
some time. There is a probability that it releases some
energy to the bath to jump down the gap ∆2 to be in
the lower state. This is depicted on the right hand side
of Figure 1. Some heat is thus transferred but no work
is performed in this stage.

• Stage 4: the system is removed from the heat bath and
undergoes a quantum adiabatic contraction, whose net
result is to increase the energy gap from ∆2 back to

1 The reverse is not in general applicable if the system con-
sists of many quantum subsystems and if these are considered
separately. Thermodynamical adiabaticity only means that the
system as a whole has no heat exchange with the environment,
but heat could still be exchanged internally between the quan-
tum subsystems (resulting in some change in the occupational
probabilities of the energy levels of the subsystems) due to
some intra-couplings among themselves, such as collisions.
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the previously larger value ∆1. This is depicted as the
lower branch of Figure 1 running from right back to
left. In this stage an amount of work is done on the
system, and this is the minimal required work as there
is no energy wasted in the form of heat transferred to
the system.

Ideal quantum adiabatic processes are employed here be-
cause they yield, on the one hand, the maximum amount
of work performable by the systems in stage 2 (as the tran-
sition probabilities to the lower state in that stage can be
made vanishingly small according to the quantum adia-
batic theorem), but yield the minimum amount of work
performable on the systems (by some external agents) in
stage 4, on the other hand. In each cycle the amount of
work done by the system is (∆1 −∆2), which is also the
net amount of heat it absorbs. Note that we need not and
have not assigned any temperature to the quantum sys-
tem; all the temperatures are properties of the heat baths,
which in turn are assumed to be in the Gibbs state.

However, in the operation above, the absorption and
release of energy in stages 1 and 3 occur neither definitely
nor deterministically. Quantum mechanics tells us that
they can only happen probabilistically; and the proba-
bilities that such transitions take place depend on the de-
tails of the interactions with and some intrinsic properties
(namely, the temperatures) of the heat baths.

Let p (1,2)
u be the probabilities for the system to be in

the upper level at the beginning of stages 2 and 4, respec-
tively. The net work done by our quantum heat engines in
the two quantum adiabatic passages in stages 2 and 4 is

∆W =

(∫

left → right
+

∫

right → left

)
∑

i

pi dEi,

=
(
p (1)

u − p (2)
u

)
(∆2 −∆1) . (4)

We will make full use of this simple expression in the sec-
tions below.

By the weak law of large numbers, probability reflects
the relative occurrence frequency of an event in a large
number of repetitions. In the case of thermal equilibrium
with only one single heat bath (T1 = T2), even with a small
probability p̃ (1)

u (1− p̃ (2)
u ) the system could be in the upper

level in stage 2 and in the lower level in stage 4, where
p̃ is the thermal equilibrium probabilities in (5) below.
The probability, however, diminishes exponentially for nc

consecutive cycles, (p̃ (1)
u (1 − p̃

(2)
u ))nc , in all of which the

system would perform net work on the environment. As
a result, there are certain cycles whose sole result is the
absorption of heat from a reservoir and the conversion of
this heat into work, of the amount (∆1 −∆2)!

This amounts to a violation of the Kelvin-Planck state-
ment of the second law due to the explicit probabilistic
nature of quantum mechanical processes. This violation
of classical statements for the second law, however, occurs
only randomly, with some vanishingly small probability
in the longer term, and thus is not controllable — neither
harnessible nor exploitable.

This may seem non-surprising given the statistical na-
ture of the second law, but it is somewhat different from
the usual scenario of violation of the second law by statis-
tical fluctuations in the bulk. One example of this latter
scenario is the instantaneous concentration of all the gas
molecules in a big room into one of its corners. Mathemat-
ically, this configuration is permissible due to the existence
of the Poincaré cycles in mechanics, but statistical physics
effectively rules this out (gives it a vanishing probability)
by invoking extra assumptions and hypotheses as men-
tioned in Section 1. The scenario with our quantum heat
engines is different in that it only involves a single (macro)
quantum system with physically realisable quantum me-
chanical probabilities, and without any extra hypothesis.
The subtle difference between the two cases is in the time
average for a single system, on the one hand, and the bulk
average, on the other, for systems having many subcom-
ponents. Further discussion on some difference between
quantum and classical fluctuations of work can be found
in [21].

4 A realisation of Maxwell’s daemon

However, there exists a sure way to always extract work,
to the amount of (∆1 −∆2), in each completable “cycle”
described in Section 3. In order to eliminate the proba-
bilistic uncertainty in the thermalising contacts with heat
baths,

• we prepare the system to be in the lower state prior to
stage 1;

• we perform an energy measurement after stage 1 and
then only let the engine continue to stage 2 subject
to the condition that the measurement result confirms
that the system is in the upper state; if this is not the
case, we repeat this step;

• we next perform another measurement after stage 3
and then only let the engine continue to stage 4 subject
to the condition that the measurement result confirms
that the system is in the lower state; if this is not the
case, we repeat this step.

All the measurements above are to ensure p (1)
u = 1 and

p
(2)
u = 0, irrespective of the heat bath temperatures, and

thus to be always able to derive maximum work according
to (4). That is, all this can be carried out even for the case
T1 ≤ T2 to extract, always and in a controllable manner,
some work which would have been otherwise prohibited
by the second law.

This apparent violation of the second law is analogous
to that of Szilard’s one-atom engine and is nothing but
the result of an act of Maxwell’s daemon [22]. Indeed, the
condition of strict cyclicity of each engine’s cycle is broken
here. After each cycle the measurement apparatus, being
a Maxwell’s daemon, has already registered the condition-
ing results which are needed to determine the next steps
of the engine’s operation. In this way, there are extra ef-
fects and changes to the register/memory of the appara-
tus, even if we assume that the quantum measurement
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steps themselves cost no energy and leave no net effect
anywhere else. To remove these remnants in order to re-
store the strict cyclicity, we would need to bring the regis-
ter back to its initial condition by erasing any information
obtained in the measurements in each of the cycles, either
by resetting its bits or by thermalising the register with
some heat bath. Either way, extra effects are inevitable,
namely an amount of heat of at least kT ln 2 will be re-
leased per bit erased. This is the Landauer principle which
saves the second law. More extensive discussions and de-
bates on these issues can be found in the literature [22],
and in particular in the quantum version of Szilard’s en-
gine by Zurek [7]. Lloyd in [23] has analysed carefully and
in detailed the Landauer principle behind the working of
Maxwell’s daemon entirely in the framework of quantum
mechanics. Maxwell’s daemon has also been discussed [24]
in the context of quantum error correction in quantum
computation.

Our quantum heat engines could thus provide, in a
different way to Szilard’s engine, a feasible and quantum
mechanical way to realise Maxwell’s daemon.

5 Thermal steady states

We have pointed out in Section 3 that there are random in-
stances where our quantum heat engines can extract heat
from a single heat bath and totally turn that into work or,
equivalently, can transfer heat from a cold to a hot source
(and may also do some work at the same time). Nonethe-
less, on the long-time average, there is no violation of the
second law.

If the system is allowed to thermalise with the heat
baths in stages 1 and 3, the thermal equilibrium probabil-
ities for the two energy levels only depend on the relevant
temperatures and the energy gaps, but not on the initial
states when the system is brought into contact with the
heat bath, see (14) below. More explicitly, the probabil-
ity p̃ (1)

u to have the system in the upper state at the end
of stage 1 after being thermalised with the heat bath at
temperature T1, and p̃ (2)

u at the end of stage 3 after being
thermalised with the heat bath at temperature T2, respec-
tively, are

p̃ (i)
u = 1/ (1 + exp{∆i/kTi}) , for i = 1, 2. (5)

These probabilities are definitely non-zero and bounded
by 0.5. From which, the work derived from (4) is

∆Wth =
(
p̃ (1)

u − p̃ (2)
u

)
(∆2 −∆1) . (6)

This is negative (that is, work has been performed by our
engines), given that ∆1 > ∆2, if and only if, as can be
seen from (5),

T1 > T2

(
∆1

∆2

)
, (7)

which is to be compared with the necessary condition of
the classical statement of the second law that T1 is simply
greater than T2.

One might think that the last result is just another
equivalent restatement of the second law by arguing that
the entropy decreased in the heat bath in stage 1 must
be, according to the usual statement of the second law,
less than the entropy increased in the other heat bath in
stage 3,

∆Q2

T2
>
∆Q1

T1
, (8)

and by assuming that ∆Qi = ∆i, for both i, upon
which (7) would have immediately followed. However, this
assumption is not justifiable because the heat ∆Q1 re-
leased by the hot heat bath, on the average, cannot be
the same as the energy gap ∆1 of the system at that
point; and likewise for the heat absorbed by the colder
reservoir. These heat amounts must be, on the aver-
age, less than the corresponding energy gaps because the
heat absorbed/released by the quantum system must be
moderated by the change in occupation probabilities (see
Eq. (3)), but such a change in the occupation probability
for a specific level is always less than one. In other words,
the energy gaps ∆i’s are the maximum energy transfers
possible in any exchange but the probability distributions
in thermal equilibrium will not allow those maximum val-
ues to be reached. However, the result (7) is consistent
with the second law (8) in the sense that it can be derived
from (8) if ∆Qi is proportional to ∆i and if the propor-
tionality constants (which are less than one) are the same
for both i = 1, 2. But such a proportionality is extra in-
gredient to the second law (8), and is a consequence of the
same cause that also leads to (7). Consequently, our de-
rived result (7) is a refinement of the classical statement of
the second law, and not simply a restatement in another
equivalent form.

The expressions (4) and (7) not only confirm the broad
validity of the second law but also refine the law further in
specifying how much T1 needs to be larger than T2 before
some work can be extracted. In other words, work cannot
be extracted, on the average, even when T1 is greater than
T2 but less than T2(∆1/∆2), in contradistinction to the
classical requirement that T1 only needs to be larger than
T2. The refinement factor (∆1/∆2) is necessarily greater
than unity (by the requirement of energy conservation)
and is dictated by the quantum structure of the heat en-
gines.

This result may be extended to multi-level quan-
tum heat engines with appropriate energy gaps, provided
the quantum energy levels involved are discrete. (See
also [16].) We show:

• in Section 10 the analogous condition T1 > T2 (ω1/ω2)
for quantum simple harmonic oscillators — where ω1

and ω2 are, respectively, the frequencies of the oscilla-
tors in the equivalence of stages 1 and 3 above (with
ω1 > ω2);

• in Section 11 the condition T1 > T2 (L2/L1)
2 for 1D

infinite square wells — where L1 and L2 are, respec-
tively, the widths of the wells at temperature T1 and
T2 (with L1 < L2).
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Fig. 2. Even though the quantum efficiency is always bounded
by the Carnot efficiency, a quantum heat engine with asymp-
totically infinite number of quantum adiabatic steps can have
both its efficiency and work output per cycle approaching those
of the latter. This can be seen when the area of the (red)
zigzag polygon approaches, from the inside, that of the irregu-
lar shape bounded by the two outermost vertical lines and the
curves labeled T1 and T2. See text for further explanation. A
colour version of the figure is available in electronic form at
http://www.eurphysj.org.

The efficiency of the two-state engines is found to be

ηq =
∆Wth

Qin
=

(
1 − ∆2

∆1

)
, (9)

which is independent of temperatures and is the maximum
available within the law of quantum mechanics. (A sim-
ilar expression, but through a specific context, was also
obtained in [25].) This expression also serves as the up-
per bound, with appropriate ∆1 and ∆2, of the efficiency
of any quantum heat engine because the work performed
by our heat engines through their quantum adiabatic pro-
cesses is the maximum that can be extracted.

The efficiency is, as a consequence of (7), less than that
of the classical Carnot engines, ηC ,

ηq < 1 − T2/T1 ≡ ηC . (10)

This is in agreement with a general fact established by
Lloyd [23] that quantum efficiency must be reduced as
more information is obtained about the system either by
measurement or decoherence. Lloyd argues that when the
system is in a fully measured or decohered state (that is,
when the density matrix is already diagonalised with re-
spect to a measured or preferred basis) then no further
information can be introduced, whence the Carnot effi-
ciency might thus be achieved.

However, the limiting Carnot efficiency may also be ap-
proached in the quantum mechanical framework through
the limit of an infinite number of quantum adiabatic pro-
cesses [8,11,14]. We illustrate this fact for our quantum
heat engines in Figure 2. A similar discussion can also be
found with the heat engines of [14].

Figure 2 depicts the inverses of (5),

∆ = kT ln
(

1
p̃
− 1

)
, (11)

with the labels T1 and T2 correspond to the two tempera-
tures. The rectangle ABCD represents a particular opera-
tion of our quantum heat engines between two heat baths
T1 and T2 — with stage 2 represented by the segment AB
(which is adiabatic with no change in the probability);
stage 3 by BC (no work done with constant energy gap);
stage 4 by CD; and stage 1 by DA, completing an engine
cycle. The area of ABCD, by virture of (4), represents the
work derivable from this operation, which is less than the
area bounded by the two vertical lines AB and CD and
the two curves, which in turn is the work derivable from
a corresponding Carnot engine also operated between the
two temperatures.

Now, we modify our heat engines to have AB as the
adiabatic expansion, BC the heat exchange, CE the adi-
abatic compression, EF the heat exchange, and so on.
When the division becomes finer and finer with more
and more steps, the area of the (red) zigzag polygon will
approach, from the inside, that of the irregular shape
bounded by the outermost two vertical lines and two hor-
izontal curves. This is the limit when our modified quan-
tum heat engine can have both the same work output per
cycle and the same efficiency as those of a corresponding
Carnot engine.

We think that this approach will have some interesting
consequences in the context of quantum information and
hope to be able to present further analysis on this limiting
scenario elsewhere.

6 Transition to thermal steady states

Given that the efficiency is bounded by that of Carnot
engines, which is another manifestation of the second law,
can we derive more work (with a larger heat input so that
the efficiency bound is maintained) than that obtainable
from the thermal steady states? In the transient states
approaching the thermal equilibria in stages 1 and 3 of a
quantum heat engines’ cycle, the density matrix elements
with the upper eigenstate |u〉 and lower |l〉 satisfy the fol-
lowing equations [26], for i = 1, 2,

∂tρ
(i)
uu = −(n̄i + 1)Γρ (i)

uu + n̄iΓρ
(i)
ll ,

∂tρ
(i)
ll = −n̄iΓρ

(i)
ll + (n̄i + 1)Γρ (i)

uu ,

∂tρ
(i)
ul = ∂t

(
ρ

(i)
lu

)∗
= −

(
n̄i +

1
2

)
Γρ

(i)
ul , (12)

under the Markovian assumption and the rotating-wave
approximation and in which the heat bath is treated as
a collection of infinite number of simple harmonic oscil-
lators. In the above, Γ is the decay rate and we have
assumed that the thermal average boson number in the
heat bath having frequency νi = ∆i/h is

n̄i =
1

e
∆i
kTi − 1

. (13)
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The solution for the differential equations above with the
heat bath at Ti is

ρ (i)
uu (t) = e−(2n̄i+1)Γt

(
ρ (i)

uu (0) − p̃ (i)
u

)
+ p̃ (i)

u . (14)

Let the system stay in contact with the heat bath at tem-
perature T1 in stage 1 for a time τ1 (without achieving
thermalisation); and for a time τ2 at T2 in stage 2. The
cyclicity of the quantum heat engines requires that

ρ (1)
uu (0) = ρ (2)

uu (τ2), ρ (2)
uu (0) = ρ (1)

uu (τ1). (15)

This requirement together with that of p̃ (1)
u > p̃

(2)
u imply,

from (14),

0 < ρ
(1)
uu (τ1) − ρ

(2)
uu (τ2) < p̃ (1)

u − p̃ (2)
u , (16)

for finite τ1 and τ2. Subsequently, the work, |∆Wtr|, that
can be derived from transient states at finite τ1 and τ2 is
always less than that from thermal equilibrium, |∆Wth|,

|∆Wtr| =
(
ρ (1)

uu (τ1) − ρ (2)
uu (τ2)

)
(∆1 −∆2) ,

<
(
p̃ (1)

u − p̃ (2)
u

)
(∆1 −∆2) ,

< |∆Wth| . (17)

We suspect that, as long as the assumption of Gibbs dis-
tributions is made for the heat baths, a non-Markovian
treatment or dropping the rotating wave approximation
would not change this last result. Nonetheless, we present
in the next section a modification of the quantum heat
engines which can better the work derivation than that
which is maximally available from thermal equilibrium.

7 Maximising the work extraction

Inspired and motivated by the Rabi flopping for two-level
systems, see [26] for example, we present in this section
a modification of the engines such that more work than
usual can be derived from thermal heat sources (as con-
trast to a single-Fock-state field that drives the Rabi flop-
ping), but at the same time more heat input would be
needed in such a way that the Carnot efficiency is still a
valid upper bound. That is, no violation of second law is
claimed here despite of the enhanced work output.

A scenario for maximizing the work output from our
quantum heat engines is as follows. Firstly, the system is
prepared to be in the lower state and then subject to a ra-
diation field in a Fock state which has exactly n1 quanta
with a frequency in resonance with the energy gap ∆1.
After some fixed time τ1, depending on the system-field
coupling strength and on the number n1, Rabi oscillations
driven by the radiation field will bring the system to the
upper energy state with certainty. At this point the system
can be removed from the field to perform some work in
an adiabatic process which reduces the energy gap to ∆2.
Then it is next subject to another field of Fock state |n2〉
which has a frequency in resonance with the new gap ∆2.

T
1

T
2

Fig. 3. A single-mode cavity is in thermal equilibrium with
a bath of black-body radiation at temperature T1. A two-
state quantum system spends some time in the cavity whose
mode matches the energy gap ∆1 between its two states. After
some prescribed time, it leaves the cavity and performs work
in an quantum adiabatic process. It then enters another single-
mode cavity which is in thermal equilibrium with another bath
of black-body radiation at temperature T2 and whose mode
matches the new energy gap ∆2. After a carefully controlled
time, it leaves the cavity and moves quantum adiabatically
back to the first cavity, having work done on it to have the
energy gap increases back to ∆1. With precise control of the
time duration spent in each cavity, the system can extract more
work in a cycle than it can if it is otherwise let to thermally
equilibrate with the two heat baths in turn.

After some time τ2 the system will be in the lower state
with certainty; upon which it can be decoupled for an adi-
abatic compression to complete a cycle of the operation.

In effect, the steps above will remove the probabil-
ity difference factor in (4), ensuring that a net work of
(∆1 − ∆2) is derived in each cycle. The key point here,
however, is that a Fock-state field is not a thermal field,
and extra work or extra information would be required to
maintain the Fock state such that the net book keeping
(when full cyclicity is strictly enforced) will show that we
cannot ultimately violate the second law.

Let us exploit this Rabi mechanism and see how it will
behave in a thermal field.

A cycle of the modified quantum heat engine is de-
picted in Figure 3. It also consists of four stages, of which
stage 2 and stage 4 remain the same as described in Sec-
tion 3, whereas stages 1 and 3 are replaced respectively by:

• stage 1’: the system has a probability p (1)
u (0) to be in

its upper state. It is entered to a single-mode cavity
which is tuned to match the energy gap ∆1 of the
system and which is in thermal equilibrium with a
heat bath at temperature T1. The average occupation
of the only mode survived in the cavity has thus a
(Bose-Einstein) thermal distribution n̄1 given by ex-
pression (13). After some carefully controlled time in-
terval τ1, the system is removed from the cavity to
enter stage 2. The probability to find the system in
it upper state is now p

(1)
u (τ1). Note that, as discussed

previously, only heat could be transferred in this stage



122 The European Physical Journal D

to yield a change in the occupation probabilities, and
no work done as there is no change in the values of the
energy levels. This stage is depicted on the left hand
side of Figure 3;

• stage 3’: the system has a probability p
(2)
u (0) to be

in its upper state. It is entered into another single-
mode cavity which is in thermal equilibrium with an-
other heat bath at temperature T2 and which is tuned
to match the new energy gap ∆2 of the system. The
average occupation of the only mode survived in the
cavity has thus a (Bose-Einstein) thermal distribution
n̄2 given by expression (13). After some carefully con-
trolled time interval τ2, the system is removed from the
cavity to enter stage 4. The probability to find the sys-
tem in it upper state is now p

(2)
u (τ2). This is depicted

on the right hand side of Figure 3. Some heat is thus
transferred but no work is performed in this stage.

With the quantum adiabatic processes in stage 2 and
stage 4, the cyclicity of the heat engines demands that

p (1)
u (0) = p (2)

u (τ2), p (2)
u (0) = p (1)

u (τ1). (18)

On the other hand, the exit probability can be obtained
as, with i = 1, 2,

p (i)
u (t) = (initial probability in |ui〉)

× (transition probability from |ui〉 to |ui〉 in t)
+ (initial probability in |li〉)
× (transition probability from |li〉 to |ui〉 in t) ,

= p (i)
u (0)|〈ui|ψ (i)

u (t)〉|2

+
(
1 − p (i)

u (0)
)
|〈ui|ψ (i)

l (t)〉|2. (19)

|ψ (i)
u(l)(t)〉 is the state which starts out in the upper (lower)

state — i.e., |ψ (i)
u (0)〉 = |ui〉 and |ψ (i)

l (0)〉 = |li〉 in the
cavity at temperature Ti.

With the thermal distribution (13) assumed for the
heat baths in contact with the cavities, the probability to
find exactly n photons of frequency ∆i/h in the cavity at
temperature Ti is

Pn(Ti) =
1

1 + n̄i

(
n̄i

1 + n̄i

)n

. (20)

In each of the cavities so described, the state of the engines
satisfies the Schrödinger equation for a single two-level
system interacting with a single-mode field which has the
frequency matching the engine’s energy gap,

i�
∂|ψ (i)〉
∂t

= �g
(
σ

(i)
+ a (i) + σ

(i)
− a (i)†

)
|ψ (i)〉, i = 1, 2,

(21)
with g is the coupling constant between the the quantum
heat engine and the cavity mode, and the operators σ± =
(σx+iσy)/2 act on the two-state space of the engine and a
and a† are the operators on the Fock space of the field. The
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Fig. 4. For the cavity in contact with a heat sink at T2 where
we want the initial probability to be lowered upon leaving, the
accessible leaving probability is bounded in the (blue) area un-
der the diagonal, with its reflection shown in gray above the
diagonal. The bounded (red) area above the diagonal is for the
cavity in contact with a heat bath at T1 = T2(∆1/∆2). The
reflection of the point A at T2 across the diagonal is clearly
not in the accessible region at T1, as there is no overlapping
of the two regions above the diagonal. So we cannot form a
cyclic quantum heat engine which does work at these temper-
atures, even when T1 is greater than T2 by a factor (∆1/∆2).
A colour version of the figure is available in electronic form at
http://www.eurphysj.org.

solution of this Schrödinger equation is given in [26], from
which we derive, through (19) and (20), the probabilities

p (i)
u (t) =

(1 + 2n̄i) p
(i)
u (0) − n̄i

(1 + n̄i)

∞∑

n=0

Pn(Ti) cos2 (Ωnt)

+
n̄i(1 − p

(i)
u (0))

1 + n̄i
,

:= Ai

∞∑

n=0

Pn(Ti) cos2 (Ωnt) +Bi, (22)

where Ωn = g
√
n+ 1.

Note that when the sum on the rhs of the last equation
collapses to a single summand term, Pn(Ti) → δ(n− n0),
corresponding to the radiation field being in some Fock
state |n0〉, then we will have recovered the Rabi oscillation
in the level populations, which could then be exploited
to apparently derive more work than otherwise allowed
by the second law, but this is only apparent and cannot
violate the law at all as discussed earlier.

From the last expression we can find the bounds, as
functions of the initial probability p

(i)
u (0) and the tem-

perature Ti, of the probability p
(i)
u (t) for all t. Figure 4

depicts these bounds. The probability for the system to
be in the upper state upon leaving a single-mode cavity in
contact with a heat bath as a function of the initial prob-
ability (upon entering the heat bath) is only accessible in
the bounded areas (of red and blue).
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• For p (i)
u (0) ≥ p

(i)
critical, where

p
(i)
critical =

n̄i

1 + 2n̄i
, (23)

the coefficient Ai of the first term in (22) is positive,
and so is the first term itself. Thus, for all t,

Bi ≤ p (i)
u (t) ≤ Ai

∞∑

n=0

Pn(Ti) +Bi = Ai +Bi, (24)

because of the normalisation
∑∞

n=0 Pn(Ti) = 1. Sub-
stitution of Ai and Bi yields

n̄i(1 − p
(i)
u (0))

1 + n̄i
≤ p (i)

u (t) ≤ p (i)
u (0),

for p (i)
critical ≤ p (i)

u (0) ≤ 1. (25)

This bounded region is depicted (in blue) in Figure 4.
• For p (i)

u (0) ≤ p
(i)
critical, the coefficient Ai is negative,

and so is the first term. Thus, for all t,

Ai +Bi ≤ p (i)
u (t) ≤ Bi. (26)

That is,

p (i)
u (0) ≤ p (i)

u (t) ≤ n̄i(1 − p
(i)
u (0))

1 + n̄i
,

for 0 ≤ p (i)
u (0) ≤ p

(i)
critical. (27)

This bounded region is also depicted (in red) in the
same figure.

Note also that the vertex on the diagonal separating these
two regions determines the stationary point where the
probability is time independent and is equal to the ini-
tial probability. As the thermal equilibrium probability
given by the Gibbs distribution must be independent of
both time and initial probability, it is represented by a
horizontal line crossing this vertex.

For the cavity in contact with the heat bath at T1,
we want to have the exit probability to be greater (the
greater, the more work can be extracted) than the initial
probability,

p (1)
u (τ1) > p (1)

u (0) = p (2)
u (τ2), (28)

thus we need only to consider the appropriate portion of
the bounds for this cavity, namely that above the diagonal.
Reversely, for the cavity in contact with the heat bath at
T2, we want to have the exit probability to be smaller (the
smaller, the better) than the initial probability,

p (2)
u (τ2) < p (2)

u (0) = p (1)
u (τ1), (29)

hence for this cavity we need only to consider the other
portion of the bounds below the diagonal. Thus, we can
also use this Figure 4 to elucidate the situation for the
two heat baths in which T1 = T2(∆1/∆2), the (red) area

∆1 > ∆2
T1 < T2 (∆1/∆2)
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Fig. 5. Similar to Figure 4 but this time with T1 <
T2(∆1/∆2). Once again we cannot have a cyclic quantum heat
engine, even for T1 in the range T2 < T1 < T2(∆1/∆2). A
colour version of the figure is available in electronic form at
http://www.eurphysj.org.

above the diagonal comes from T1 and the (blue) below the
diagonal from T2. The coordinate of a pointA in the (blue)
area below the diagonal in Figure 4 is (p (2)

u (0), p (2)
u (τ2)),

representing an exit probability less than the entry one at
the cavity with temperature T2. The corresponding point
at temperature T1 must have, by requirement of cyclicity,
the coordinate

(
p (1)

u (0), p (1)
u (τ1)

)
=

(
p (2)

u (τ2), p (2)
u (0)

)
, (30)

which thus is the reflection of the point A across the diag-
onal. The gray area above the diagonal in Figure 4 is the
reflection of the (blue) area for T2. However, it is clearly
seen that for T1 = T2(∆1/∆2) this reflection is not in
the accessible (red) area for T1. We then conclude that
at these temperatures, even with T1 greater than T2 by
a factor (∆1/∆2), the quantum heat engines cannot do
work on the average. As a consequence of the temperature-
independent efficiency similar to (9), the engines can nei-
ther absorb nor transfer any heat.

In Figure 5, we combine the relevant bounds for T2

below the diagonal (in blue) and those for T1 above the
diagonal (in red) for the choice T1 < T2(∆1/∆2). It is
seen once again that no work is derivable on the average.
Not only we have thus confirmed the second law that,
on the average, no process is possible whose sole result
is the transfer of heat from a cooler to a hotter body,
with or without a production of work. But we have also
clarified the degrees of coolness and hotness in terms of
the quantum energy gaps involved before such a process is
possible; namely, we must have T1 > T2(∆1/∆2), as in (7)
once again.

We now show how our quantum heat engines are ca-
pable of performing more work than can be derived from
thermal equilibrium otherwise. In Figure 6, which com-
bines the case T1 > T2(∆1/∆2), there is some overlap be-
tween the (red) area for T1 and the reflection of the area
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Fig. 6. Similar to Figure 4 but this time with T1 >
T2(∆1/∆2) > T2. We can form a cyclic quantum heat engine
at these temperatures, in broad agreement with the classical
statement of second law. The maximum work that can be ex-
tracted in a single cycle is proportional to the length of the (yel-
low) vertical double arrow and is more than that for thermally
equilibrated situation, which is proportional to the distance
between the two horizontal (green) lines which represent the
thermal equilibrium probabilities for these T1 and T2 respec-
tively. A colour version of the figure is available in electronic
form at http://www.eurphysj.org.

for T2 across the diagonal. In this case, it can be seen that
the production of some work, ∆Wcav, is now possible,

|∆Wcav| =
(
p (1)

u (τ1) − p (2)
u (τ2)

)
(∆1 −∆2) . (31)

In general, if and when we choose to operate with a point
below the thermal equilibrium line in the (blue) area for
T2 such that its reflection across the diagonal is above
the thermal equilibrium line in the (red) area for T1 as
shown in the figure, we can derive more work than the
case of thermal equilibrium. The work done is propor-
tional to the difference in probabilities as shown in (4)
and (31). Here |∆Wcav| is greater than the work deriv-
able at thermal equilibrium, |∆Wth|, because the vertical
distance between point A and its reflection in Figure 6 is
greater than the vertical distance between the two hori-
zontal lines, which represent the two thermal equilibria.

From the bounds (25) and (27), we can evaluate the
maximum amount of work extractable from our modified
quantum heat engines at given temperatures

max |∆Wcav|
|∆Wth| =

(1 + 2n̄1) (1 + 2n̄2)
(1 + n̄1 + n̄2)

> 1. (32)

This is the upper limit we could obtain when the switching
on and off of the system-field coupling can be done in such
an adiabatic manner that the total associated work for
switching can be made arbitrarily small. Nonadiabatic or
sudden switching requires some work input specific for the
situation, which would lessen the ratio above.

Fig. 7. p
(1)
u versus time according to equation (22). The system

enters a single-mode cavity, in contact with a heat source at
temperature T1 (here, kT1/∆1 = 1.5), with the probability

in the upper state p
(1)
u (0) = 0.165 (= p

(2)
u (τ2), by cyclicity

requirement) and leaves the cavity, at suitably chosen time

τ1, with the increased probability p
(1)
u (τ1) = 0.29. This latter

probability is larger than the thermal equilibrium probability
at this temperature (dashed line).

Fig. 8. p
(2)
u versus time. Similar to Figure 7 but this time the

probability upon entering a cavity, in contact with a heat sink
at temperature T2 < T1(∆2/∆1) < T1 (here, kT2/∆2 = 1.0),

is p
(2)
u (0) = 0.29 (= p

(1)
u (τ1), by cyclicity requirement) and

upon leaving, at suitably chosen time τ2, is p
(2)
u (τ2) = 0.165,

completing a cycle of the quantum heat engine. The latter
probability is lower than the thermal equilibrium probability
at this temperature (dashed line), thus allowing more work to
be extracted.

8 An illustration

As an illustration that we can choose and a priori fix the
time τ1 and τ2 for all the cycles of the modified mode
of operation for our quantum heat engines such that more
work can be derived than otherwise available from thermal
equilibrium, we present herein the example in Figures 7
and 8. These numerical results are obtained from (22) with
g = 1 and other parameters as stated in the captions. Note
that in Figure 7 the probability at subsequent time is al-
ways more than that of the initial time, in agreement with
the fact that the (red) area for T1 is above the diagonal
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in Figure 6. The reverse is true for Figure 8, because the
(blue) area for T2 is below the diagonal in Figure 6.

9 Maxwell’s daemon revisited

The expression (22) for the probability, derived from (19),
requires some careful justifications. Following [26], we ex-
pand the state vector |ψ〉 (dropping the superscript (i)) in
terms of |u, n〉, in which the engine is in the upper state
|u〉 and the field has exactly n photons, and of |l, n〉 in
which the engine is in the lower state |l〉,

|ψ〉 =
∑

n

(cu,n(t)|u, n〉 + cl,n(t)|l, n〉) . (33)

From this, the Schrödinger equation (21) can now be re-
placed by

ċu,n = −ig√n+ 1 cl,n+1, ċl,n+1 = −ig√n+ 1 cu,n.
(34)

The general solutions for these probability amplitudes are

cu,n(t) = cu,n(0) cos (Ωnt) − icl,n+1(0) sin(Ωnt),
cl,n+1(t) = cl,n+1(0) cos(Ωnt) − icu,n(0) sin(Ωnt), (35)

in which the initial probability amplitudes are assumed to
be factorised,

cu,n(0) =
√
pu(0)

√
Pn,

cl,n+1(0) = eiθs
√

1 − pu(0)eiθf
√
Pn+1, (36)

where the relative phases θs for the engine and θf for the
field, respectively, are not zero in general.

Now, we can also express the probability on the lhs
of (22) as

pu(t) =
∑

n

|cu,n(t)|2. (37)

Direct substitution of the amplitudes above, however,
leads an additional cross term which does not exist on
the rhs of expression (22) but is proportional to

∼ 	
(
ieiθs

√
pu(0) (1 − pu(0))

×
∑

n

eiθf
√
PnPn+1 cos (Ωnt) sin (Ωnt)

)
. (38)

Accordingly, the various bounds for pu(t) will be modi-
fied by the term

√
pu(0) (1 − pu(0)), which is nonlinear

in pu(0), unlike the situation in (25, 27) depicted in Fig-
ure 4, from which the second law was seen to be followed.
One might think that this extra non-linear term could
be exploited to beat the second law (thanks to the newly
emerged overlapping of regions which were not overlapped
previously in Fig. 4). But this is not meant to be, how-
ever. The reason for this impossibility is that, in general,

the various phases in (38) are not fixed but can be random,
especially for the phase θf of the thermal field. They will
have to be averaged over, rendering the cross term (38)
vanished after all. We thus get back the expression (22)
exactly.

If the phases could be controlled physically then the
second law might be violated. But the point to be empha-
sised here is that such a control of the phases will require
some careful operation which is nothing more than just
another disguised act of Maxwell’s daemon. In the end,
any such resulted violation of the second law, if possible,
is not and should not be surprising at all.

10 Quantum heat engines with 1-D simple
harmonic oscillators

We now generalise some of the above results to quan-
tum systems having an infinite number of energy levels.
Firstly, we consider a 1-D simple harmonic oscillator of fre-
quency ω1 in thermal equilibrium with a heat bath at T1.
The oscillator is then removed from the heat bath to un-
dergo a quantum adiabatic expansion until its frequency
is dropped to ω2. It is then equilibrated with another heat
bath at temperature T2 before undergone another quan-
tum adiabatic compression to raise its frequency back to
ω1. In one such cycle, the oscillator performs an amount
of work,

∆W =
∞∑

n=0

(
E (1)

n − E (2)
n

) (
p (2)

n − p (1)
n

)
,

= � (ω1 − ω2)
∞∑

n=0

(
n+

1
2

) (
p (2)

n − p (1)
n

)
,

= � (ω1 − ω2)
∞∑

n=0

n
(
p (2)

n − p (1)
n

)
, (39)

with the Gibbs distributions for i = 1, 2

p (i)
n =

(
1 − e−αi

)
e−nαi , (40)

and

αi =
�ωi

kTi
. (41)

We have used the energy expressions for simple harmonic
oscillators

E (i)
n =

(
n+

1
2

)
�ωi. (42)

Let

x = α2 − α1 (43)

and consider the sum in (39) as a function of x,

f(x) =
∞∑

n=0

n
{(

1 − e−α1−x
)
e−nα1−nx

− (
1 − e−α1

)
e−nα1

}
. (44)
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Its derivative is

f ′(x) = −
∞∑

m=1

me−m(α1+x), (45)

which is always negative (we always have x > −α1 for
the convergence of the infinite sum, as α2 > 0). Thus
f(x) is a monotonically decreasing function; in particular,
f(x) < f(0) = 0 for x ≥ 0. From the definition of x (43)
and f(x) (44) we conclude that the oscillator can only
perform work on the environment (i.e. when f(x) < 0)
if and only if x > 0, which means that α2 > α1. That is,

T1 > T2

(
ω1

ω2

)
(46)

is the necessary and sufficient condition for work to be per-
formed by a quantum simple harmonic oscillator in such
a cycle described above.

11 Quantum heat engines with 1-D infinite
square wells

Similarly to the last section, but we now replace the os-
cillator by a particle of mass m in an 1-D infinite square
well. The work performed in a cycle is also

∆W =
∞∑

n=0

(
E (1)

n − E (2)
n

)(
p (2)

n − p (1)
n

)
, (47)

but this time with the energies

E (i)
n = n2 �

2π2

2mL2
i

(48)

and the thermal distributions

p (i)
n =

e−n2γi

∑
m e−m2γi

≡ e−n2γi

Zi
, (49)

where γi = �
2π2/(2mkTiL

2
i ) and Li are the widths of the

wells at Ti. Thus, expression (47) becomes

∆W =
�

2π2

2m

(
1
L2

1

− 1
L2

2

) ∞∑

n=0

n2
(
p (2)

n − p (1)
n

)
. (50)

Let

y = γ2 − γ1, (51)

and consider the infinite sum on the rhs of (50) as a func-
tion g of y. Its derivative wrt y is

g′(y) = −
∑

n

n4 e
−n2(γ1+y)

Z2
+

{
∑

n

n2 e
−n2(γ1+y)

Z2

}2

,

= −〈(n2)2〉y +
(〈n2〉y

)2
, (52)

where

〈O〉y ≡
∑

n

On
e−n2(γ1+y)

Z2
. (53)

It follows directly from (52) that g′(y) < 0. Noting that
g(0) = 0, we thus have g(y) < g(0) = 0, that is, ∆W < 0,
if and only if y > 0. In other words, the condition upon
which the system can do work is if and only if

T1 > T2

(
L2

L1

)2

. (54)

Once again, this is clearly a refinement of the second law
of thermodynamics for this kind of quantum heat engines.

It is straightforward to generalise the consideration
above to some particular cases of continuous spectra. Let
the energy spectrum of a quantum system to be used for
the quantum heat engine be continuous and be able to be
indexed by a continuous variable α in such a way that

E(α) = h(α)k(generalised extensive coordinates �x).
(55)

h(α) is the generalised form of the discrete n of the simple
harmonic oscillators or n2 of the infinite wells considered
above. The work done in a cycle analogous to (47) is

∆W = (k(�x1) − k(�x2))
∫
dαh(α)

(
e−h(α)k(�x2)/(kT2)

Z2

− e−h(α)k(�x1)/(kT1)

Z1

)
, (56)

where Zi are the partition functions

Zi =
∫
dα e−h(α)k(�xi)/(kTi) . (57)

Now it is a simple matter to repeat the last few steps
leading to (54) above to show that work can be done by
the continuous-spectrum system if and only if:

T1 > T2

(
k(�x1)
k(�x2)

)
, (58)

where the last factor on the rhs is always greater than one,
thus clarifying the second law of thermodynamics.

12 Concluding remarks

By interpreting work and heat, but without referring to
entropy directly, in the quantum domain and by apply-
ing this interpretation to the simplest quantum systems,
we have not only confirmed the broad validity of the sec-
ond law but also been able to clarify and refine its var-
ious aspects. On the one hand, explicitly because of the
probabilistic nature of quantum mechanics, there do ex-
ist physical processes which can violate certain classical
statements of the second law. However, such violation only
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occurs randomly in the short term and thus it cannot be
exploitable nor harnessible. On the other hand, the second
law is seen to be valid on the average. This confirmation of
the second law is in accordance with the fact that, while
we can treat the quantum heat engines purely and entirely
as quantum mechanical systems, we still have to assume
the Gibbs distributions for the heat baths involved. Such
distributions can only be derived [27] with non-quantum-
mechanical assumptions, which ignore, for example, any
quantum entanglement within the heat baths. Indeed, it
has been shown that [28,29] the law of entropy increase is
a mathematical consequence of the initial states being in
such general equilibrium distributions. This illustrates and
highlights the connection between the second law to the
unsolved problems of emergence of classicality, of quantum
measurement and of decoherence which are inter-related
and central to quantum mechanics. Only until some fur-
ther progress is made on these problems, the classicality of
the heat baths will have to be assumed and remained hid-
den in the assumption of the Maxwell-Boltzmann-Gibbs
thermal equilibrium distributions.

Even our results support the second law, on the aver-
age, we have further clarified the degree of temperature
difference (7), in terms of the quantum energy gaps in-
volved, between the heat baths before any work can be
extracted. While the Carnot efficiency is an upper bound
for that of the quantum heat engines, the former could
be approached by the quantum engines with the intro-
duction of an infinite number of alternating adiabatic and
heat transferred steps. The implication of this approach
in the context of quantum information deserves further
investigations elsewhere.

Inspired and motivated by the Rabi oscillations, we
have also shown how to extract more work from the heat
baths than otherwise possible with thermal equilibrium
distributions — but more heat input would also be needed
in such a way that the Carnot efficiency is still a valid
upper bound. Note that such an operation is subject to
the bounds given in (25) and (27), which then, as can be
seen through their depiction in the figures, ensure that we
stay within the second law, but refined with the necessary
condition (7). The perfect agreement between the specific
results derived from the quantum dynamical bounds (25)
and (27) with the general result (7) derived from statisti-
cal mechanics is quite remarkable. We speculate that such
agreement is not accidental but is once again a conse-
quence of the Gibbs distributions assumed for the heat
baths in both derivations; and the agreement should thus
be independent of specific details of the quantum dynam-
ics involved. Note also that the modified operation with
single-mode cavities is not an operation of Maxwell’s dae-
mon because the information about the time intervals τ1
and τ2 is not conditional but is fixed and forms an in-
tegrated part of the modified engines. This information,
being common to all cycles, need not and should not be
erased after each cycle to preserve the cyclicity condi-
tion. Other studies of very different classes of quantum
heat engines [13,15] have apparently claimed similar re-
sults that more work can be derived than from classical

engines. (However, if the cyclicity condition is not strictly
observed for a heat engine, as in the case for some of those
studies, then some extra effects may be hidden or unac-
counted for, such as those associated with a maintenance
of some coherent states or some Fock state, and apparent
violation of the second law might thus be possible.)

Our class of quantum heat engines can also readily of-
fer a feasible way to physically realise Maxwell’s daemon,
in a way different to Szilard’s engine but also through the
acts of quantum measurement and information erasure.
Finally, some of our results above have also been gener-
alised to quantum heat engines having an infinite number
of energy levels, or even special cases of continuous spec-
tra. Some analysis of three-level quantum heat engines
has also been available recently [16], but because of the
many different energy gaps available, different conditions
with different combinations of gap ratios could enter as a
counterpart of (4) above.
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